“欢乐春节”序曲,倾情演绎经典!唐诗在费城回响******
中新网1月7日电 据“中国对外文化交流协会”微信公众号消息,美国东部时间1月6日晚,由中国对外文化交流协会、中国驻纽约总领馆、中国常驻联合国代表团、中国银行、江苏省文化和旅游厅、苏州市人民政府共同支持的《唐诗的回响:iSING! Suzhou和费城交响乐团中国新年音乐会》在费城基默演艺中心成功首演。
图片来源:中国对外文化交流协会微信公众号音乐会由廖国敏指挥,来自中国、美国等10个国家的15位歌唱家在费城交响乐团伴奏下,倾情演绎重新谱曲的经典唐诗作品,包括李白的《将进酒》《静夜思》、白居易的《赋得古原草送别》、柳宗元的《江雪》、骆宾王的《咏鹅》、张继的《枫桥夜泊》等。
图片来源:中国对外文化交流协会微信公众号中国驻纽约总领事黄屏、美国联邦众议员Dwight Evans、费城市长Jim Kenney、费城交响乐团总裁马思艺在演出前出席有关活动,并与当地各界观众共同观看了演出。
第二场音乐会将于当地时间1月7日晚在纽约林肯中心举办。(完)
提速近10倍!基于深度学习的全基因组选择新方法来了****** 近日,中国农业科学院作物科学研究所、三亚南繁研究院大数据智能设计育种创新团队联合多家单位提出利用植物海量多组学数据进行全基因组预测的深度学习方法, 可以实现育种大数据的高效整合与利用,将助力深度学习在全基因组选择中的应用,为智能设计育种及平台构建提供有效工具。相关研究成果发表在《分子植物(Molecular Plant)》上。 全基因组选择作为新一代育种技术,通过构建预测模型,根据基因组估计育种值进行早期个体的预测和选择,从而缩短育种世代间隔,加快育种进程,节约成本,推动现代育种向精准化和高效化方向发展。 统计模型作为全基因组选择的核心,极大地影响了全基因组预测的准确度和效率。传统预测方法基于线性回归模型,难以捕捉基因型和表型间的复杂关系。 相较于传统模型,非线性模型(如深度网络神经)具备分析复杂非加性效应的能力,人工智能和深度学习算法为解决大数据分析和高性能并行运算等难题提供了新的契机,深度学习算法的优化将会提高全基因组选择的预测能力。 该研究团队以玉米、小麦和番茄3种作物的4种不同维度的群体数据为测试材料,通过创新深度学习算法框架开发了全基因组选择新方法。 与其他五种主流预测方法相比,该方法有以下优点: 可以利用多组学数据开展全基因组预测;算法设计中包含批归一化层、回调函数和校正线性激活函数等结构,可以有效降低模型错误率,提高运行速度;预测精度稳健,在小型数据集上的表现与目前主流预测模型相当,在大规模数据集上预测优势更加明显;计算时间与传统方法相近,比已有深度学习方法提速近10倍;超参数调整对用户更加友好。 该研究得到了国家重点研发计划、国家自然科学基金、海南崖州湾种子实验室和中国农业科学院科技创新工程等项目的支持。 学术支持 中国农业科学院作物科学研究所 记者 宋雅娟
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |